5,140 research outputs found

    Electric field measurements with stratospheric balloons

    Get PDF
    Electric fields and currents in the middle atmosphere are important elements of the modern picture of this region. Balloon instruments, reaching the level of the stratosphere, were used extensively for the experimental work. The research has shown good progress, both in the MAP period and in the years before and after. The knowledge was increased about, e.g., the upper atmosphere potential, the electric properties of the medium itself and about the coupling with magnetospheric (ionospheric) fields and currents. Also various measurements have brought about a discussion of the possible existence of hitherto unknown sources. Throughout the MAP period the work on a possible definition of an electric index has continued

    High temperature thermoelectric efficiency in Ba8Ga16Ge30

    Get PDF
    The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivity, and Seebeck coefficient were performed up to 1173 K and compared with literature results. Dilatometry measurements give a coefficient of thermal expansion of 16×10^−6 K^−1 up to 1175 K. The trend in electronic properties with composition is typical of a heavily doped semiconductor. The maximum in the thermoelectric figure of merit is found at 1050 K with a value of 0.8. The correction of zT due to thermal expansion is not significant compared to the measurement uncertainties involved. Comparing the thermoelectric efficiency of segmented materials, the effect of compatibility makes Ba8Ga16Ge30 more efficient than the higher zT n-type materials SiGe or skutterudite CoSb3

    Transmitting values about education: A comparison of black teen mothers and their nonparent peers

    Get PDF
    Central to the debate about why some poor people remain poor is the enduring question of what role values play in behavior patterns as observed in chronically impoverished families and communities. Young black women who grow up in impoverished families in urban ghettos face some similar challenges to becoming competent adults who function independently in the wider society. Not all young women who fit this demographic category become young or single mothers who depend on AFDC; some who do also complete levels of education that lead to economic self-sufficiency. In order to explore the question about values and their significance among the urban poor, we examine the life histories of 50 young black women from inner-city Milwaukee, looking in particular at values and behaviors as they relate to educational competence. We analyze the perceived family values about education, the ways in which the young women's families acted on those stated values with the intention of influencing their daughters' educational outcomes, and how these values and transmission processes are related to the young women's educational attainment.

    Particle motion in atmospheric boundary layers of Mars and Earth

    Get PDF
    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow

    Enhanced electron correlations in FeSb2_2

    Full text link
    FeSb2_2 has been recently identified as a new model system for studying many-body renormalizations in a dd-electron based narrow gap semiconducting system, strongly resembling FeSi. The electron-electron correlations in FeSb2_2 manifest themselves in a wide variety of physical properties including electrical and thermal transport, optical conductivity, magnetic susceptibility, specific heat and so on. We review some of the properties that form a set of experimental evidences revealing the crucial role of correlation effects in FeSb2_2. The metallic state derived from slight Te doping in FeSb2_2, which has large quasiparticle mass, will also be introduced.Comment: 9 pages, 7 figures; submitted to Annalen der Physi

    Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSb2x_{2-x}Tex_x

    Full text link
    Substitution of Sb in FeSb2_2 by less than 0.5% of Te induces a transition from a correlated semiconductor to an unconventional metal with large effective charge carrier mass mm^*. Spanning the entire range of the semiconductor-metal crossover, we observed an almost constant enhancement of the measured thermopower compared to that estimated by the classical theory of electron diffusion. Using the latter for a quantitative description one has to employ an enhancement factor of 10-30. Our observations point to the importance of electron-electron correlations in the thermal transport of FeSb2_2, and suggest a route to design thermoelectric materials for cryogenic applications.Comment: 3 pages, 3 figures, accepted for publication in Appl. Phys. Lett. (2011

    Wind tunnel studies of Martian aeolian processes

    Get PDF
    Preliminary results are reported of an investigation which involves wind tunnel simulations, geologic field studies, theoretical model studies, and analyses of Mariner 9 imagery. Threshold speed experiments were conducted for particles ranging in specific gravity from 1.3 to 11.35 and diameter from 10.2 micron to 1290 micron to verify and better define Bagnold's (1941) expressions for grain movement, particularly for low particle Reynolds numbers and to study the effects of aerodynamic lift and surface roughness. Wind tunnel simulations were conducted to determine the flow field over raised rim craters and associated zones of deposition and erosion. A horseshoe vortex forms around the crater, resulting in two axial velocity maxima in the lee of the crater which cause a zone of preferential erosion in the wake of the crater. Reverse flow direction occurs on the floor of the crater. The result is a distinct pattern of erosion and deposition which is similar to some martian craters and which indicates that some dark zones around Martian craters are erosional and some light zones are depositional

    On Picard groups of algebraic fibre spaces

    Get PDF
    corecore